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FINITE DIFFERENCE MODELS FOR THE STATIONARY HARMONICS
OF ATMOSPHERIC MOTION

M. SANKAR-RAO

The Travelers Research Center, Inc., Hartford, Conn.

ABSTRACT

A finite difference procedure is utilized for the solution of a coupled system of two ordinary differential equations

governing the time averaged quasi-geostrophie perturbations in the atmosphere.

The seasonal changes in the lati-

tudinal mean state are found to introduce important phase changes and reversals in the asymmetric meridional circu-

lation.

A hypothetical latitudinal mean stability profile, which resembles many of the latitudinal mean stability
profiles gencrally used in analytical studies, is found to give acceptable results in many cases.

Barotropic models

for the zonal mean state are found to be incapable of giving acceptable quantitative results

1. INTRODUCTION

The long-standing debate on the relative importance
of the thermal and orographic influences in maintaining
the stationary zonally-asymmetric perturbations of the
atmosphere cannot yet be considered resolved despite
much theoretical effort on this subject. Asis well known,
the solutions of the linearized approximate potential
vorticity equation for the stationary zonally-asymmetric
state, which is the basis of most of the theoretical discus-
sions, are controlled not only by the assumed distribution
of the forcing due to the thermal, orographic, and transient
eddy effects, but also by the assumed form of the basic
zonal mean state, rotation, and friction. Even when the
forcing functions are assumed to be explicitly known,
this equation in its general form is not separable except
under certain restrictive assumptions regarding the zonal
mean state, the Coriolis parameter f and its variation with
latitude B. The theoretical studies up to the recent
past naturally fall into four broad groups, depending on
the combination of, and assumptions about, the influencing
factors considered in each case.

A. Research in which the effect of forcing due only to
heating is investigated.

In these works, some or all of the variables of the basic
zonal mean state are generally considered either constant
or pressure dependent only. f and g8 are taken as con-
stants. Friction is generally considered. Sometimes
when an equivalent barotropic or two-level baroclinic
model is used, implicit assumptions are made regarding
the variation of even the zonally asymmetric perturba-
tions with pressure. Examples of studies in this group
are Smagorinsky [26], Gilchrist [10], Delisle and Harper
[6] and Doos [7].1 '

1 Dods parameterised one part of the heating by a heating funection similar to that used
by Mintz [16). Future advances scem to lie in parameterisations of this kind.

B. Studies in which the effect of forcing due to orography
only is investigated.

In these researches, the treatment of the basic zonal
mean state, f, 8, and friction is similar to that in the
thermal case, and here also, implicit assumptions are
usually made regarding the wvariation of the zonally-
asymmetric perturbations with pressure. Examples are
Queney [18], Charney and Eliassen [4], Bolin {3], Gambo
[8, 9], Magata [15], and Kawata [12].

C. Investigations in which attempts are made to study
the results of forcing due to a combination of heating,
orography, and transient eddy effects, of different
spatial scales.

In these studies, also, the treatment of the basic zonal
mean state, f, 8, and friction is similar to that in the above
cases. No assumptions are made regarding the variation
of the zonally-asymmetric perturbations with pressure
(e.g., Saltzman [20], [21]).

D. Researches in which attention is focused not only on
the forcing functions, but also on the latitudinal vari-
ation of f and U, the zonal mean east-west component
of the wind. :

Friction is not considered in these works. In some
cases, mainly as a mathematical expedient, barotropy, or
in effect equivalent barotropy, is forced on the zonal mean
state or on both the zonal mean state and the perturba-
tions. Examples of studies of this kind are Kuo [14],2
Staff Members, Academia Sinica [27], and Barrett [1].

In addition to these theoretical works, a great number of
published diagnostic observational results are pertinent to
this problem. KExamples are Sutcliffe [28], Haurwitz and
Craig [11], Saltzman and Peixoto [23], Van Mieghem,
Defrise, and Van Isacker [29], Clapp [5], Saltzman and
Fleisher [22], and Saltzman and Rao [24].

2 Though Kuo treated a homogencous problem, his work is of great importance for the
question of forced perturbations
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Even when the components of the basic zonal mean
state are taken as functions of pressure alone, the analyti-
cal solution of the resulting coupled system of ordinary
differential equations is very laborious and time consum-
ing. Introduction of realistic zonal mean vertical profiles
is extremely difficult, if not impossible, in the usual
analytical methods. It is the main purpose of this paper
to demonstrate a powerful finite difference method which
not only reduces the labor to an insignificant amount of
computer time, but also opens new possibilities for many
kinds of numerical experimentation. As examples, some
interesting results will also be discussed.

2. APPROXIMATE EQUATION GOVERNING THE TIME
AVERAGED AXIALLY ASYMMETRIC PERTURBA-
TIONS OF THE ATMOSPHERE

We adopt the notation of Saltzman [21] except for the
following changes: z* y* X, Y, @, H, and the subscript &
of Saltzman, are replaced here by z, y, Ay, Ay, H, @ and
the subscript b, respectively. Also, we further define

De=D—D,
K=r"1
X=Iz
Y=1ILy
E=p/ps

where

D =any dependent variable
L=any scaling length 0
ps=any scaling pressure #0.

With the use of the above notation, the approximate
nondimensionalised equations governing the time-averaged
axially asymmetric perturbations of the atmosphere, along
with the top and bottom boundary conditions, in the X,
Y, and £ system, assume the form (Saltzman [21]).

Oy , 0y , 0%y
>x ot oE

+a°”*+e =LFU, (1)

Oy ho— dH,  at E=tr

o8 (1a)

L O Otly _
a$+Bv*+T<aX aY> EaX—i—NH at =& (1b)

where

y=vw.p=(—L*pKy)[p’R

b=b0r. = <—L2f2§§{pKo] )/psR

menoit [24L2 (k,221)]
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e _geC DR
Fy — KOL Ucpj }&t =,
Nt
by
N=N vy =(—p, )| Uspf J

In the X and Y directions, we assume periodicity.
Also here Fi, Hx, and hx, which denote the axially
asymmetric manifestation of internal and external forcing
functions, and v, 8, ¢, b, d, B, 7, E, and N, which denote
the axially symmetric state, are considered given.

3. MATHEMATICAL PROBLEM

Given the coefficients and forcing functions in (1),
(1a), and (1b), the problem is to solve (1) with periodicity
conditions in the X and Y directions, while at &7 and &,, (1a)
and (1b) have to be satisfied respectively. Before considering
the relaxation technique which naturally suggests itself
for such a problem, we should note that the lower bound-
ary condition (1b) contains a second dependent variable
ux which can be written in terms of v« through the geo-
strophic assumption. Then (1), (1a), and (1b) will be
in one dependent variable o« only, but (1b) will be an
integro-differential equation. The order change by the
introduction of the geopotential will not solve the diffi-
culties completely, because e in the zero order term in (1)
is usually positie for most of the earth’s atmosphere.
It is found that under these circumstances the relaxation
method cannot be applied to solve (1) with its above-
mentioned boundary conditions (Sankar-Rao {25]). Thus
mostly for mathematical expediency, we assume that

(Assumption 1) Us=U(£), Ko=EKo(8), %)T—" o > ()
and
(Assumption 2) %g%: =constant

so that y=v(§), 6=6(£), e=¢(¢) while b, d, B, =, E, N become
constants. Now let us introduce by, dx, Bk, 7, Ek,
and Ny to denote the new constants b, d, B, r, £, and IV
respectively. Also let =, 6, and A represent v(£), §(¢),
and e(£) respectively. With this notation, (1), (1a), and
(1b) take the form
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%, , 0%, o, v dv
DTY*"’+ )74;'*'»—-4 E;k_i—e ?g"l’Av*:G* (2) Z;-}—bK?/z—dKHg at ng'p (4&)

dv, 0 2m7r
——=—+ Bxv — py=—FEg-—— M+ NgH, at £=¢g,.
%Dg-l-b,(v*zdxﬂ* ab E=£r @) TR gma " S )
Here
m’
%?"‘BK%‘I‘TA a?jx*’ g'l?; b};j-f—NKII* at £=§, V=47 l2 +k2]
2b

(20) Symbols with subscripts 1 and 2 refer to the Fourier
where coefficients, which are functions of m, n, and & for the

G*: (LZF*)/UO‘

The simplified problem is now to solve (2) with its
prescribed boundary conditions. To this effect, we can
now use the double Fourier expansion method which is
equivalent to the method of separation of variables.

4. FOURIER EXPANSION AND THE RESULTING SYSTEM
OF ORDINARY DIFFERENTIAL EQUATIONS

Assuming that all the time averaged axially asymmetric
dependent variables satisfy the Dirichlet conditions, we
can expand any such dependent variable Dy as

DX, Y, )= i[ E cos 2W7X
m=1n=0
4+ Dj .. » sin 2m lnX:I co 2mnY +[D3 o 27r7ln1X

+D¥% ,, , sin

21rmX] . 2mY
sin

Here [ and k are the lengths of the fundamental region in
X and Y directions respectively. m and n are wave num-
bers. The subscripts m and n and superscript £ indicate
that the Fourier coefficients are functions of m, n, and &.

Now dropping subscripts m and n, and superscript £ for
convenience in writing and substituting expansions of the
above type in (2), (2a), and (2b) we get two coupled
systems of ordinary differential equations with ¢ as the
independent variable (after writing 4+ in terms of v+ in
(2b) through the geostrophic approximation) as follows,
for a single harmonic:

First System

‘fl§;+e Lt (a—m=6, 3)
dvl It er
+BAUI+TK 2 =Fg- h2+NKIJl at £=¢,
(3b)
12 dvs
=G O g T ()=, (4)

respective dependent variables. We note that the
coupling in the first system comes through the friction
term.

Second System

The second system is exactly similar to the first; the
subscripts 3 and 4 replacing 1 and 2 respectively in the
first system.

5. SOME REMARKS

We shall concern ourselves with the first system only
because the second system is exactly similar. The first
system is generally solved (Smagorinsky [26], Saltzman
[20]) by making further analytical assumptions regarding
the coefficients, =, 0, and A so that the resulting second
order ordinary differential equations contain coeflicients
which are linear functions of the independent variable
and therefore can always be transformed to standard
confluent hypergeometric type of equations (cf., Bateman
2], p. 249). At this point, we shall depart from the
analytical approach and follow a finite difference method.

We note that the equations (3) and (4) have a singular
point at the level where U;=0. Here v« can be many
valued. But in the real atmosphere, such singularities do
not exist and v+ remains a single-valued function. At
such places where U/;=0 in the real atmosphere, other
physical processes (neglected here), like virtual viscosity
and heat conduction due to molecular and small-scale eddy
effects, become dominant. However, at a small but finite
distance from this point, the original equations can be
expected to hold. So, in the neighborhood of the point
where U;=0, we have to use new equations, taking these
additional processes into consideration. The nature of
these new equations will be different and the point where
Uy=0 becomes a regular point. In this way, the difficulty
with the singularity has been circumvented in previous
analytical studies (Kuo [13, 14]: DelLisle and Harper {6]).
In the numerical procedure to be described here we do not
perform calculations in the neighborhood of this singular
point. Thus, in effect, we assume continuity of all the
variables across this singular point. In this way, we
force regularity on this point. By using a fine enough
mesh, we can expect to confine the error introduced by this
procedure to a small neighborhood of this point. In this
context, the author feels it important to study in the
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future, by this method, some of the related analytical
works, e.g., DelLisle and Harper [6]. Thus, for this finite
difference scheme, we shall assume that

(Assumption 3) No point of the finite difference
lattice for the region considered coincides with a
singular point.

6. FINITE DIFFERENCE METHOD OF SOLUTION

The fundamental difficulty in applying the finite dif-
ference technique to solve the system (1) is the coupling,
which cannot be broken up by simple addition or sub-
traction. The first method, naturally suggesting itself,
is to take an arbitrary », and solve for », from (3), (3a),
and (3b) and take that v, and solve for a new v, from (4),
(4a), and (4b) and to repeat this process until we arrive at
stationary values of »; and v,. There is no guarantee that
such a process will lead to convergence unless we are able
to prove it by numerical analysis. A superior method
which takes advantage of the fact that the upper boundary
conditions are not coupled, will be described now. In this
context we shall introduce multiple letter symbols which
are like FORTRAN floating point variables.

A. THE FINITE DIFFERENCE INTERIOR EQUATION

The centered difference equation corresponding to (3)
can be written at any grid point 7 as (fig. 1)

A2N ()21 (741) +BIN() - 2:(j—1) +CON(7) - () =DFN(5)
(%)

where
A2N(5)=2-2()—0(y) -3
BIN(@j)=2-8¢"- A(f) —4-E(j) —2-8£%°
CON(f)=2-E(5)+6()) ok
DEN(j)=2-8£%- G1(j)
st=grid spacing
j=an index referring to grid points from 1 to .J.

(J— 1)5£=[£T—Eb]

and D(j)=value of any dependent variable D at j.
Here, without any loss of generality, we assumed that
¢ is decreasing from 1 to .J.

The centered difference equation for (4) is written
similarly as

AZN(G)2(5+1)+BIN(Y) - 22(j—1) -+ CON(5) - v2() = EFN(3)
(6)
Now we consider a one parameter family of solutions for

o and v, which are of the iterative type (Richtmyer
[19], p. 103),
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(7)) =EIN(3) -»:(5+1)+FIN()
v2(5) =E2N(g) -0:(3+1) -+ F2N(3)

where
ElN(j)z[BlN(j)+Eo§a(??ﬂlN(j—1)] (5.1)
E2N (j):[BlN(j)+60§2(1$(?%2N(j-1)] (6.1)

In order to get E1IN(1), F1N(1), E2N(1), and F2N(1)
which are necessary to calculate E1N(5), FIN(j), E2N(y),
and F2N () from (5.1), (5.2), (6.1), and (6.2), we intro-
duce the boundary condition at .

B. APPLICATION OF THE UPPER BOUNDARY CONDITION

To introduce the boundary conditions in finite differ-
ence form, we will assume that,

(Assumption 4) The dependent variables »; and
v, are continuous across the boundaries at
£r and &, so that the interior equation as well as
the boundary conditions are to be fulfilled at
j=1 and at j=d.

With this assumption, we can now introduce fictitious
points at j=0 and j=J+1 (see fig. 1). If we write
the upper boundary condition at j=1 in the centered
difference form and require that the iterative type of
equations (5) and (6) must hold for any member of the
family, we get

(1) =EIN(1) - 5,(2) +FIN(1) (50)
5a(1) =E2N (1) - 0o(2) + F2N (1) ©69)
where
_ [A2N(1)+CON(D)]
EINO=—miNm—coNg)- GiN] oD
_ [DFN (1)—CON (1)-HIN]
BN O=Tgwm—con ey 002
_ [A2N(1)+CON (1]
E2N O=—miNva)—coNa)-Genj (6D
_ [EFN (1)—-CON (1)-H2N]
BN O=miNnm—coNaGeNy @2
GIN=2.65b¢

G2N =2.0¢.b
H2N=26£dK'H2

at j=1
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Ficure 1.—Finite difference scheme.

From (5.1), (5.2), (6.1), (6.2) and (5a.1), (5a2), (6a.1),
(6a.2) we can inductively calculate EIN(j), E2N(j),
FIN(), and F2N(j) in order of increasing j (j=1, 2,
3...J—1). Now we use the lower boundary condition

to get v (J) and v,(J).

C. APPLICATION OF THE LOWER BOUNDARY CONDITION

As in the case of upper boundary condition, we invoke
Assumption 4, introduce a fictitious point at J--1, and
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write the boundary condition at J in the finite difference
form. Thus we get

[A2N (J) +CON (J) Jo,(J—1) +[BIN (J) +A2N(J)
. gLAN] - 9,(J) —[DFN(J) +-A2N (J) - hL1IN]
L A2N(J) - FRN(J) - 5,(J)=0  (5b)
[A2N (J) +CON () Joo(J—1) +[BIN(J)

+A2N(J) - gL2N] - 0,(J) —[EFN(J) +A2N(J)
- RL2N]—A2N(J) - FRN(J) - 0,(J)=0 (6b)

where,

i?

GLIN =2-6¢ r¢-n—=gL2N

2mr

1?
FRNZZ@E'TK%
) r»at j=J
T ok N, |

hLlN:?-&g-[EK-

hL2N=2-ag-[—EK-3$-h1+NK H2] J

We can write for o,(J—1) and v,(J—1) in (5b) and (6b),
n(J—1)=EIN(J—1) - 0,(J)+FIN(J—1) (5b.1)
2a(J—1) =E2N(J—1) - 0,(J) +F2N(J—1) (6b.1)

Now substituting (5b.1) and (6b.1) in (5b) and (6b) we get

SIN - 5, (J)+S2N+S3N - 0,(J)=0  (5b.2)

S4AN - 0,(J) +S5N +S6N - 0,(J) =0 (6b.2)

where

SIN=[A2N(J) - EIN(J—1)+CON(J) - EIN(J—1)
4+BIN(J)+A2N(J) - gLIN]

SIN=[A2N(J) - FIN(J—1)+CON(J) - FIN(J—1)
_DFN(J)—A2N(J) - hL1N]

S3N=+[A2N(J) - FRN]

SAN=[A2N(J) - E2N(J—1)+CON(J) - E2N(J—1)
+BIN(J)+A2N(J) - gL2N]

SEN —[A2N(J) - F2N(J—1)+CON(J) - FaN(J—1)
_EFN(J) — A2N(J) - hL2N]

S6N =—[A2N(J) - FRN]

D. FINAL PHASE OF THE FINITE DIFFERENCE SOLUTION
From (5b.2) and (6b.2) we can very easily obtain o,
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(J) and v, (J) by direct elimination. After obtaining
v(J) and v,(J) we use (5) and (6) to calculate #(j) and
2,(7) inductively in the decreasing order of j(j=J-1, J-2,
...4,3,2,1). Thus we arrive at the complete solution.

7. SOME COMPARATIVE RESULTS

For comparison purposes, we take Saltzman’s [20]
model, for which some results were published. Finite
difference solutions for wave number (m,n)=(3,0) are
obtained. Figure 2 shows the solution for heating with
friction while figure 3 gives the solution for mountain
with friction. It should be noted that the origin of
figure 2 corresponds to 45° longitude in Saltzman’s
figure. This is so because the heating maximum in
figure 2 is at the origin, while it is placed at 45° longitude
in Saltzman’s figure (see corrigenda {20}). Here the grid
spacing is arbitrarily taken as 5 mb. Experimentation
with different grid spacings is contemplated. The time
taken by the IBM-7090 is less than a minute for one
solution for v+, with all the related fields such as Tx, s,
and kx. The agreement, at least for this type of atmos-
pheric problem can be considered very satisfactory. The
results with the second model of Saltzman [21] were
equally successful but are not published here.

8. SOME EXPERIMENTAL RESULTS

Only the results of a few experiments will be discussed
here. No attempt will be made, at present, to construct
a general theory.

A. TOP BOUNDARY CONDITION

From figure 2, we can see that with w«»=0 as the top
boundary condition, we get very large perturbations at
the upper boundary for certain harmonics. If the top
boundary condition is changed to »xr=0, which can be
easily done in this numerical scheme, figure 4 is the
result. Kverything else is held the same as in figure 2.
It is found that though this change in the upper boundary
condition had an insignificant effect on the lower tropo-
spheric perturbations, the values obtained for levels
above 50 mb. appear to be more reasonable. So for all
the remaining experiments the top boundary condition is
taken as vxr=0.

B. INFLUENCE OF THE SEASONAL CHANGE IN THE ZONAL
MEAN STATE ON THE TOPOGRAPHICALLY FORCED PER-
TURBATIONS

To study the effect of zonal mean state change on the
perturbations, produced by the mountains, we take the
following data:

L=8.333 X107 cm.

=36

k=9

g=980 cm. sec.™?
R=2.87X10°% ¢cm.~? sec.7? deg. ™!
¢,=1.00X107 cm.? sec.™ deg.™*
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C=1.6X10* cm.

ps=1000 mb.
=900 mb.
pT:5 mb.
2rmX 2rnY
hye=h, cos T oS ——
hi=2X10* cm.
H*:O

pp=1.2X1073gm. em.™3

Also the values of K, 07/0Y, and U, utilized here are given
in table 1. At 30°N. and 60°N. the U, values at the lower
boundary are arbitrarily taken as 1 m. sec.”™ both in
winter and summer (because it is not still clear how far we
can trust the observational 900-mb. values at these
latitudes). At 45°N., the U, values at the lower boundary
are taken as 2.5 m. sec.” and 4.5 m. sec.”}, for summer
and winter respectively, which appear to agree with the
observations. fand 8values are taken to correspond to the
latitude under consideration. In all these figures cor-
responding to mountain with friction cases, the atmos-
pheric troughs and ridges show a slight shift from the
topographic troughs and ridges.

Figures 5 to 10 give the solutions for (m, n)=(3,0) at
different latitudes. The changes in the intensity of
circulation and the position of the nodes are of interest in
this type of study. It is to be noted that at 30°N. and
60°N. the node appears at a lower pressure in winter than
in summer. At 60°N., this results in a reversal of phase
even at 500 mb. from one season to the other. The
analytical studies generally have restrictions on K,
though they may be different for troposphere and strato-
sphere. To study the effect of this, a hypothetical K,
(table 1, col. 1), which has constant values in the tropo-
sphere and stratosphere with a linear variation between
300 and 100 mb., is taken. This K is used at all the
Iatitudes for both the seasons keeping everything else the
same. Figures 11-16 show the results which are self-
explanatory. From these, we can conclude that for a
quantitative theory of the stationary zonally asymmetric
perturbations, the hypothetical vertical structure of the
zonal mean stability is a good approximation in many cases.
However, for 30°N. in the summer and for 60°N. in the
winter, there are significant discrepancies, especially in
the upper atmosphere above the 200-mb. level. Also in
all these cases, one can see that the perturbations attain
their maximum amplitudes near the stratosphere.

In order to get a rough qualitative explanation of
these results, let us consider the following analogies.
Equations (3) and (4) in this problem of forcing due to
the moutains are similar (f =, 6, and (A—»?) remain
positive constants and if the time axis is replaced by
the ¢ axis) to the equations expressing the free vibrations
of a weight of mass =, attached to a spring having an
elastic constant (A—1?), in a viscous medium with a
damping constant ©. (We could also suggest an electrical
analogy of a discharging condenser with a capacity of
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Figure 2.—uvx solution in m. sec.”! for Ficure 3.—ux solution in m. scc.”! for Figure 4.—vx solution in m. sec.”! for
Saltzman’s [20] model. Heating with Saltzman’s {20] model. Mountain with Saltzman’s [20] model. Heating with
friction case. (mn)=(3,0). wx=0 at friction case. (m,n)=(3,0). wx=0 at friction case. (mm)=(3,0). v«=0 at
the top. the top. the top.

(A—»®)~1, through an inductance E and a resistance ©.)
In the atmosphere, for certain planetary scales of motion
(e.g. (m, n)=(3, 0)), the coefficient A—#" is positive,
though not a constant. Besides, the coeflicients =, and
6 are generally positive, though not constants, in the
atmosphere. Thus for these scales of motion, falling
back on the analogy suggested above, we can expect
damped harmonic oscillations of » in £ This means for
these scales it is possible to have nodes for v« with respect
to £ the number again depending on the coefficients and

the boundary conditions. By virtue of the boundary con-
dition at f=¢; the origin is a node in this problem. In
the spring analogy, the mass is at rest initially. So we
can expect a maximum amplitude of v« to occur at some
distance from the origin. This “distance’” (or in our
analogy, the “‘interval’’) depends on the coefficients and
the boundary condition at the other end. In this atmos-
pheric problem, this point happens to be, in many cases,
near the tropopause. As £ increases, the perturbations
are damped out, as suggested by our analogy. (A—®)

TasLE 1.—Values of Ko, 3To/dy, and U, utilized. Here, K, is in 10¢ OGS, 8T,/dy is in 1078 CGS, Uy s in 10* CGS. W stands for winter,

S for summer, HY P for hypothetical values, p for pressure in mb.

Up to 100-mb. level, Ko and 0Ty/0y values for summer and winter were

computed from Peizoto’s [17] standard-level data, assuming linear variation between the neighboring points for which the data are available

for the use of centered differencing.

Above 100-mb. level, these values are hypothetical.

30°N. 45°N, 60°N
P KHYP
KW | Ko | 3Ty | 3Ty | uow | U || KW | ES [0 | aTo | uew | Ues || KW | KeS | oy | 8To | taW | UGS
oy Yy ay Iy ay oy
—2,00 | —2.60 | —2.13 | —6.13 | —3.53 | 1.00| 1.00 | —1.81 | ~2.03 | —8.50 | —590 | 4.68| 250 | —1.23 | —1.81 | —6.39 | ~5.201 1.00| 1.00
—2,00 | —2.15 | —2.27 | —5.50 | —3.00 | 3.64 | 250l —193 | —2.07 | —7.57 | —5.57 | 7.34 | 445 || —L64 | —1.98 | —4.87 | —4.56 | 243 | 2.27
—200 | —208 | —2.30 | —5.30 | —2.60 | 6.48 | 3.97{l =212 | —2.15 | —7.30 | —5.10 | 10,18 | 6.49 || —2.07 [ =215 | —4.48 | ~4.44 | 3.85| 3.63
—2.00) —210 | =217 | —5.40 | —2.50 | 9.78 | 551 || —2.21 | ~2.17 | —6.90 | —5.05 | 13.32| 874 |l —2008 | ~215| —4.24 | 417 | 437 | 514
—2.00 | —2.13 | —2.10 | —5.50 | —2/40 | 13l64 | 7.27 (| —2'19 | —2.15 | —6.50 | —5.00 | 16.83 | 11.37 || —2.08 [ —2.16 | —3.99 [ ~3.90 | 7.08 | 6.8l
200 —1.57 | —L.75 | —5.10 | —2.45 | 1820 | 9.40 || —1.65 | —1.70 | ~5.80 | —4.80 | 20.76 | 14.50 || —1.40 | ~1.48 | —3.5¢ | —3.09 | 8.98 | 858
—2.00 | —1.00 | —1.31 | —4.70 | —2.50 | 23.82 | 1220 || — 95| —1.07 | ~510 | —4.60 | 25.24 | 1838 | —.72| —.80{ —3.09 | —2.29 | 1L14 | 10.32
—163| —.90| —L13| —415 | —1.80 | 2534 | 1204 || — 80| —.91 | —3.28 | —2.80 | 26.28 | 19.30 || —.62| —.68 | —2.05| —1.20 | 1L65 | 10.67
—116]| —.80| —.95| —8.60 | —1.10| 26.79 | 1348 || —65| —.75 | —L45| —L 00| 26.03 | 19.82 1 —52| — 56| —L0L | — 11| 1.98 | 10.81
—70| ~7| —77| -8.05| —40| 2817| 1379 | —58| —60| .38| 80| 27.08| 19.8¢| -41| —44| 03| o8| 1210 | 10.70
—33| —.62| —60| —250| 30| 20.45| 138 | — 40| — 45| 220| 260| 26.64| 19.26| —.31| —382| 108| 206| 11.94| 10.29
—33| —ls1| —47] —28| L55| 30.17) 1332| —33| —39| 3.40| 3.60| 2557| 18.07| —.27| —.28| LO3| 268| LL63| 9.57
—33| —40| —l35| 1.95| 280 | 29.64} 11.09| — 26| —33| 4.60| 460, 2379| 16.25|] —.23| —.24| .99| 330 | 1L27| 8.5
-—.33 —.33 —.30 4.18 4.05 27.42 9.52 —-.20 —-.23 5.80 5.60 21. 06 13.57 —. 19 —.20 .94 3.91 10.87 7.02
—.33 —-.25 —.25 6. 40 5.30 22.74 5.39 —.15 —-.12 7.00 6. 60 16.95 9. 66 —.16 —. 16 .90 4.53 10.41 4,88
—33| —18| —17| 48| 39s| 16.46| .18( —11| —oo| 525| 4.95| 193] 492 —.12| —12| 67| 3.40] 990 | 231
—33| —10| —08| 32| 265| 10.16| —504| —.07| —o05| 35| 330| 690 .19} —o08| —o08|] .45| 226! 939| -—.27
—33) —05| —o04] 1Loo| 1.33] 3.8 |-10.25) —oa| —03| L75| 165| 18| —454| —o04) —.04 22| 113| 88| —2.8
-3 —o1| —l0 32| 27| -vis|-14a3| —loo| —os| 35| i3 -214|-833| —01] —l01) 05| ".23| 847] —4.90
T66-540—65—4
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Figure 5.—wu+ solution in m.
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Figure 17— solution in m.
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becomes negative, when the horizontal advection of
relative vorticity dominates over the g advection term.
In this case, depending on the other coefficients, the
solution can become exponential and we cannot expect
any nodes. For certain scales of motion, this happens
to be the case. The point in the wave number space at
which this switch occurs is close to the quasi-resonant
point. The solutions exhibit a sudden change in character,
while crossing this quasi-resonant point.

Now we shall go back to the discrepancies for 30° N.
for summer and 60° N. for winter. For 60° N. in winter,
the K, value at £, is much smaller than the hypothetical
K, value at &,. This induces greater forcing at the
boundary and this may be the reason for large discrep-
ancies in the upper regions. For 30° N. in summer, no
such obvious explanation can be given. In this context,
the author feels that many more experiments can be
designed to answer certain specific interesting questions.

Figures 17 and 18 show the results for (m, n)=(3, 1)
at 45° N. Significant phase changes from one season to
the other at all levels are the interesting features of these
figures. This can happen if the wave number falls on one
side of the quasi-resonant frequency in one season and on
the other side in another season (cf., Gilchrist [10]).

To investigate the acceptability of the barotropic or
equivalent barotropic theories, a uniform current, with
the 500-mb. zonal mean velocity at 45° N. corresponding
to the season considered, is introduced. The foreing is
kept the same by adjusting the mountain height. The
results for (m, n)=(3, 0) are given in figures 19 and 20.
For (m, n)=(3, 1), the results are given in figures 21 and
22. It can be inferred that the barotropic or equivalent
barotropic theories can give only qualitative results even
at the 500-mb. level for (m, n)=(3,1). At least for some
important scales, they seem to be incapable of giving ac-
ceptable results. Also, from figures 21 and 22 we can
infer, from the vertical structure of the response, that the
wave number (3, 1) falls on either side of the quasi-
resonant frequency according to the season, giving rise to
a 40° phase change.

9. SOME CONCLUDING COMMENTS

The results here show the importance of the vertical
structure of the zonal mean state and the scale of the
perturbations and, therefore, have an important bearing
on the numerical modeling of the atmosphere. Before
trying to construct a quantitative theory in a spherical
geometry, it will be of great interest to experiment with
different kinds of heating functions. Above all, we should
keep in mind that the nonseparability of (1), the com-
plexity of the lower boundary condition, and our ignor-
ance regarding the vertical structure of the perturbation
heating function, are the formidable impediments in the
way of constructing a quantitative linear theory.

M. Sankar-Rao
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